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it is unreasonable to expeet that they can assimilate
more than a small part of it, but they definitely do under-
stand the distinetion between real and ideal gases.

I found the preparation of the exercises very stimulat-
ing since I, like all students of my generation, never had
the opportunity to examine equations of state of real

gases very carefully. The type of information t}.,

now becomes readily available is illustrated in t},, -

ficure; with the programs available, extension to othy,
gasesis a trivial matter.

Readers who would like copies of the three excreis,..
are invited to write for them.

Vincent S. Steckline!
Drew University
Madison, New Jersey 07940

The Lenz-Ising Model has found wide
use in the study of co-operative phenomena.? Gas-
liquid and liquid-liquid critical phenomena, magnetic-
curie points, and helix coil transitions are examples of
the diversity of problems to which the model has been
applied. Although the model is conceptually simple,
its wonders are embedded deep within the mathematies
used in its solution. The phenomena associated with
the model in two dimensions (most spectacularly a
critical temperature) are given Deus ex machina in most
treatises on statistical mechanics leaving the student at
an uncomfortable level of abstraction. This article
describes a simple computer approximation to the
Lenz-Ising model which demonstrates the predicted
properties in the concrete terms of a computer printout
of the ordering of an initially random Lenz-Ising lat-
tice.

The heart of the program is two lattices, the Lenz-
Ising lattice A, the elements of which can have the value
=+1, and a second similar lattice B, used to store infor-
mation. The lattice size and number of dimensions can
be varied as can the energy e needed to change the sign of
an element as well as the temperature of the system.

Initially, lattice A is populated with random =1 (—1
raised to a random integer power between 0 and 9).
The individual elements of =1 have two forces acting on
them; random ‘“‘thermal” force, and the force of the
nearest neighbor interaction trying to make the sign of
all the nearest neighbors the same.

The nearest neighbor force is determined for each ele-
ment a(z,7) of A with the help of an index Q(z,7), the
sum of all the nearest neighbor lattice elements; thusin
two dimensions

Qi) =ali — 1L,))+aG+ 1)+ ... + a(i,j + 1)
If Q(7, ) is less than 0, the majority of nearest neighbors
are —1 and the element of lattice B, b(7, j) is set equal to
—1. IfQ(z,7) is greater than 0, b(z, j) is set equal to +1;
andif Q(7,7) = 0,b(s,7) = a(3,J).
Having decided what the sign of an element would be

from just nearest neighbor interaction, the program con-

siders random thermal forces. To change the sign of an
element the thermal energy kT must overcome the en-
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ergy of transition E arising from an energy barrier ¢ u-
well as the force of its nearest neighbors. The energy of
nearest neighbor interaction will be proportional to the
absolute value of Q. The factor exp[-(e + |Q|/kT)] wili
give a number between 0 and 1 proportional to the
probability that an element will have enough thermal
energy to change sign. In order to determine whether
this element is one of the lucky ones having enough en-
ergy, a random number between 0 and 1 is generated.
If the random number is smaller than exp[—(e +
|Q!/kT)], element b(3, 7) is changed to —b(%, 7).

After going through all of the elements of A and storing
the information in B, the program sets lattice A equal
to B and the process of determining which elements will
change sign is begun over again.

In two dimensions, below the critical temperature,
nearest neighbor forces succeed in ordering the lattice,
while above the critical temperature no ordering occurs.
The dynamies of the model, mimicking real ecritica!
phenomena, become very sluggish near the eriticul
temperature.
steps needed to order the system just below the critical
temperature, this temperature is determined to better
than one significant figure only with great patience.

Interestingly enough with 7 = 0 and therefore onl
nearest neighbor forces active, the lattice is seldom ahle
to order itself. As soon as four or more adjacent cle-
ments form a rectangle they become impregnable to on'y
nearest neighbor forces. At most an element of thi-
configuration ecan have only two neighbors of differct!
sign, and thus it cannot be forced to change its sign.
would seem that the random thermal forces are nece
sary to break up these otherwise unassailable domains-
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The computer model was not intended to be rigorou-. |

several better approximations to the Lenz-Ising lattice
are evident. I think, however, that these improv¢
ments would be needless complications adding nothing 1
the pedagogic value of the program. The original con
puter program (in Basie) is available from the author ¢
request.

! Work performed at Dartmouth College.
? BrusH, S. G., Rev. Mod. Phys., 39, 883 (1967).
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